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The diastereomeric 7,8-diol-9,10-epoxides (la,b) of the environmental carcinogen benzo[al-
pyrene (BP) are highly reactive, potent alkylating agents that combine with nucleophiles at the

benzylic carbon atom of the oxirane ring.l They are potent mutagens2 and may be ultimate

P58 = 68

1a,b

carcinogenic forms of BP. Both cis and trans opening of the oxiranme ring of 1 in waterlc sug-
gested carbonium ions (at Clo) as intermediates and promp;ed perturbational molecular orbital
(PMO) calculations. The calculationa3 predict that diol epoxides for a number of polycyclic
aromatic hydrocarbons (PAH's) should vary greatly in le reactivity and that those in which

the oxirane ring forms part of a "bay region" (such as 1) should be the most reactive for a
given PAH.3a The calculated relative ease of carbonium ion formation was suggested as an index

by which the relative mutagenicity could be predicted for a series of positional isomers of

a series: oxirane oxygen and benzylic OH on same face of saturated ring.

b series: oxirane oxygen and benzylic OH on opposite faces of saturated ring.
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diol epoxides derived from a given PAH.3a

the weak carcinogen benzo[a]anthracene (BA) have calculated values of AEdeloc
of ‘benzylic carbonium ions of 0.7668, 0.5268 and 0.5728, respectively, which suggests that the

predicted reactivity and mutagenicity should be 2a >> 4a v 3a. Metabolic activation of dihydro-
diols 2~-4 (presumably to 2a,b-4a,b), other dihydrodiols of BA, and BA established that 2 caused

For example, diol epoxides 2a, 3a and 4a derived from

3b for the formation

>7-fold more mutations that the other substrates4 and supported this prediction.

To determine whether the metabolic activation studies provided a true reflection of in-
herent mutagenicity rather than differences in rates of metabolism, synthesis and testing of diol
epoxides from BA was required. The diol epoxides were prepared from the corresponding dihydro-

diols5 by routes analogous to those used for the preparation of the naphthalene diol epoxides and

9a 3a 4a <base base - C -22H, 2b,3b4b

20, 3cAC 2,34

partial structures for: 3,4~dihydroxy-3,4-dihydrobenzo[a]anthracene, 2; 8,9-dihydroxy-8,9-
dihydrobenzo[a]anthracene, 3; 10,11-dihydroxy-10,11-dihydrobenzo[a]anthracene, 4.

l}. Treatment of the dihydrodiols with m-chloroperoxybenzoic acid in THF produced diol epoxides
2b-4b in yields of 60,52 and 80%, respectively. In a typical experiment, an excess of m-
chloroperoxybenzoic acid (1 g) was added to a solution of dihydrodiol (100 mg) in anh. THF

(20 ml) under argon. After 1 hr, EtOAc (150 ml) was added, and the organic phase was extracted
(10Z NaOH), dried (MgSOA), and concentrated to yleld a white solid which was purified by
trituration with acetone. The diastereomeric diol epoxides 2a-4a were prepared in two steps

by conversion of the dihydrodiolé to the bromotriols 2c-4c with N-bromoacetamide in aq. THF
(yields of 62,67 and 70%, respectively) followed by cyclication of the bromotriols either with
Amberlite (OH-form) in anh. THF (for 2a, 95% yield) or with KOBut in anh. THF (for 3a and 4a,
yields of 77Z and 38%, respectively). In a typical experiment, bromotriols were prepared by
adding HC1 (one drop) to a solution of NBA (64 mg), and the dihydrodiol (100 mg) in THF/HZO

(16 ml/4 ml) and stirring under argon at 0° for 2 hr. EtOAc was added and the organic phase was
extracted with H2
recrystallized from ethanol. In the cyclization with Amberlite, the bromotriol (100 mg) and
resin (5 g) were stirred in anh. THF under N2 for 1 hr. The resin and solvent were removed to
give the product which was purified by trituration. Alternatively, KOBut (36 mg) was added to a
solution of bromotriol (44 mg) in anh. THF (5 ml) under argon. After 1 hr, 20 ml THF was added
and the mixture was filtered through florisil which was eluted with EtOAc to give the diol
epoxide as a white solid on concentration of the eluent. The diol epoxides are formed stereo-
specifically in each case, due to the directing effects of the hydroxyl groups1 as shown by the
NMR specta in the Table. Significant upfield shifts of the benzylic hydroxyl protoms, a

0, dried, filtered and concentrated to give the product which was
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consequence of shielding due to the influence of the oxirane ring, are observed for 2a-4a and are
most pronounced for 3a and 4a as expected by analogy with chemical shifts observed in the
spectra of the diastereomeric diol epoxides of naphthalene and of BP (lp,b).la’b

Second-order rate constants were measured for the reaction between the BA diol epoxides
(added in 0.05 ml of DMSO) and sodium p-nitrothiophenolate in dry HOBu® (3.0 m1) at 30° as
previously described.1b In the a series which is more reactive due to anchimeric assistance by
the intramolecular hydrogen bond between the benzylic hydroxy group and the oxirane oxygen, rate
constants of 53 M_]'sec-1 (2a), 14 M_lse.c_1 (3a), and 9 M_lsec_1 (4a) were observed. The
corresponding diastereomers in the b series were 60 to 130 times less reactive. As anticipated
from the calculations of AEdeloc’ the diol epoxides of 2 were 4 to 6-fold more reactive com-—
pared to those of 3 or 4 within each series. Results of testing for mutagenic activity were
even more dramatic. Diol epoxides 2a,b were >14 times more active than 3a,b and é;,b.6 Very
little difference in mutagenicity was found when diastereomeric pairs from the a and b series
were compared. Diol epoxides of other hydrocarbons are being examined to determine the

generality of the "bay region concept7 and its importance to PAH-induced carcinogenesis.
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